Categories
科学育儿

学龄前活动

©2008-2019 亲子教育 亲子科学育儿,Ph.D.,亲子游戏

学龄前数字活动通常涉及计数,但是
仅仅背诵数字单词是不够的。

儿童还需要发展“数字意识”,
实际的直觉 与给定数字关联。

数字感从何而来?

实验表明,即使是6个月大的婴儿也可以分辨出4个饼干和8个饼干之间的区别。14个月大的婴儿似乎也已经意识到计数可以告诉我们 某事 关于数量(Wang and Feigenson 2019)。

所以这是一个开始。随着孩子的长大,需要的是亲身体验。受启发
研究,以下游戏鼓励孩子们思考几个关键
概念,包括

  • 一对一的数字原则 (两组相等
    当且仅当它们的物品可以一一对应地完美放置时)
  • 增加幅度的原理 (后面的数字
    单词代表更大的数字)
  • 一对一计数原理 (每个项目应
    计数一次,仅计数一次)
  • 稳定顺序原则 (数字字必须在
    相同的顺序)
  • 基本原则 (最后一个单词代表
    集合的数字

当您的孩子参加这些学前班数字活动时,请记住这一建议(基于我的循证证据 学前数学课程指南):

从小开始。 根据孩子的注意力范围和发育水平调整游戏很重要。对于初学者来说,这意味着要对专注于 数量很少(最多3或4)。

ķ保持乐趣。 如果不是好玩又有趣,那就该停止了。

耐心一点。 一世年幼的孩子大约需要一年的时间来学习计数系统的工作原理。

六项循证学前班活动

1.配对集:教授一对一的数字原则

一对一匹配是一个非常重要的数学概念。这就是我们证明两个数量相等的方式。如果每个集合中的项目可以一对一匹配且没有剩余项目,则两个集合包含相同数量的项目。

研究人员称其为“一对一的数字原则”,您可以通过这些简单的学前数字活动来帮助孩子们掌握这一概念。

首先,给孩子们一些摆在桌子或地板上的小令牌。

然后要求他们使用其他令牌创建此集合的相同副本。完成后,对每组中的项目进行计数-原始和副本。

其次,您可以一次为孩子展示两套。

在这种情况下,请确保每个集合都包含相同数量的令牌,但要以不同的空间模式排列令牌。然后让您的孩子复制这两个集合,并进行计数以确认所有集合均相等。

两三岁的孩子可能需要大约一年的时间才能真正了解计数系统的工作原理,因此,如果年幼的孩子无法计数超过“ 1-2-3”,也不要感到惊讶。帮助孩子进行计数(如果需要),并随着他们的技能发展向他们挑战更多的代币。

对于这些游戏的另一种方法,请使用印刷卡,每个
带有描绘一组点或其他小物件的图片。

孩子的意见
卡片并使用令牌创建匹配的项目集。您可以使
卡自己,或购买一些现成的。

您应该使用什么令牌?对于未成年儿童
三年之内,选择不会造成窒息的东西很重要
家庭亲子旅游。

根据美国消费品安全委员会的说法,球形
如果物件小于1.75英寸,则该物件对3岁以下的儿童不安全
直径的高尔夫球。如果其他物体可以放入管内,则不安全。
直径为1.25英寸(英寸)。
可能会做的工作。

另外,请尝试使用外观简洁的令牌和卡片
符号。

您可能会认为小玩具青蛙或蜘蛛会数数
更多乐趣。但是研究人员发现,幼儿往往会分心
通过这些细节。

孩子们在学前数字活动中会学到更多
操作更简单,更抽象的项目(Petersen和McNeil 2012)。塑料
筹码-例如用于扑克或宾果游戏的筹码-对于年龄较大的孩子来说是一个不错的选择
3以上。

2.分享
在茶会上:将代币分成相等的部分

这是另一项帮助孩子一对一练习的活动
匹配,灵感来自Brian Butterworth及其同事(2008)的研究。

选择三个玩具生物扮演派对的角色
参加者,让您的孩子为他们布置桌子。然后给你的孩子
与聚会分享的一组“礼物”(令牌或真实食品)
客人。礼物总数应为3的倍数,因此您的孩子
可以平均分配所有项目,并且没有剩余物。

如果您的孩子犯了一个错误并且也给了一个生物
许多令牌,您可以扮演另一个生物的角色并抱怨。

您还可以扮演茶话会主持人的角色,
故意犯错。寻求孩子的帮助?有人也得到了吗
很多令牌?还是不够?让您的孩子修理它。

一旦您的孩子掌握了一切,尝试为他提供帮助
一个令牌过多,并讨论如何处理剩余的令牌。

一种解决方案是将余数分成三等分
位。但是您的孩子可能会提出其他非数学解决方案,例如
自己吃点东西。

3.按数量排序:讲授增幅原理

对于这些学前班数字活动,请使用类似的卡片
在#1中描述。您可以通过三种方式使用它们。

游戏一:猜对顺序。

要玩此游戏,请洗牌,然后请您的孩子放置
它们并排排列,并且幅度越来越大。

对于尚未学会数数的孩子,请使用卡片
差异很大,例如3、6、10和15。

对于具有新兴计数技能的孩子,请使用相差一个点的卡片,让孩子先猜,然后通过计数检查答案。

所有这些猜测的意义何在?

实验表明
甚至婴儿也可以发现这么大的差异, 并练习这些任务
可以帮助孩子提高他们的估计能力-
对于将来的数学成就至关重要。

例如,在最近的一项研究中,研究人员用这些学龄前儿童活动的基于计算机的版本对五岁的孩子进行了测试。孩子们没有足够的时间去数数。他们只是快速浏览并根据其直观的视觉印象做出回答。

练习逐渐变得更加困难的辨别力的孩子-每次尝试后都能获得准确的反馈-在使用符号数字解决问题的能力方面获得了后来的提高(Wang等人2016)。

第二局:猜猜哪张卡上有更多圆点?

要玩此游戏,请选择两张卡,每张卡显示不同的数字
点,并显示给您的孩子。哪个卡有更多点?

确保您从以下卡片开始
相差至少2:1。对于
例如,尝试1对2、2对4和2对5。您也可以尝试更大的数字,
像6对12。

当您的孩子练习这些容易区分的差异时,您可以为她提供越来越困难的选择(例如6对8;甚至9对10)。

对于更有趣的游戏变体,您可以使用
代币而不是卡片,并假装它们很有趣,例如蛋糕。都乐
找出您之间的不同金额,然后问:“谁有更多?”

确保给您的孩子关于正确的反馈
回答。

第三场:大个子吃得更多。

要玩游戏,请使用您的纸牌,以及三个大小不一的软动物玩具或玩偶-小,中和大。

假装玩具是派对客人,而卡片上的物品则对待。然后

  • 将三个玩具按大小顺序排列,
  • 向您的孩子展示三张卡片,每张卡片描绘的点数不同,并且
  • 请您的孩子给最大的玩具最大的对待,最大的玩具给第二大的玩具,最小的给最小的玩具。

告诉您的孩子正确的回答时间(“正确!”),如果他犯了一个错误,请指导他进行另一次尝试(“那不正确-再试一次!”)。

如果愿意,可以使用代币而不是纸牌来玩游戏。而且,一旦您的孩子学会了阅读和理解数字符号,就可以使用仅显示阿拉伯数字的卡片。

当研究人员测试类似的学前数字活动时,他们发现基于点的游戏和基于数字的游戏都可以帮助孩子更好地理解数量。但是玩过阿拉伯数字游戏的孩子的基本算术技能有了更大的提高(HonoréandNoël2016)。

图片来自Honoré和Noël(2016)的研究。

4.现货
愚蠢的事情:教授一对一的计数原理和计数原理
基数

这是另一个“一对一”原则-这次
一对一的原则 数数。 孩子们需要学习
系列仅被计算一次。他们还需要学习原理
基数, 我们计数中的最后一个词代表
集合的数量。

孩子们通过练习学习这些想法。但是他们可能
也可以通过纠正犯错的人来学习。

在一项研究中,研究人员
要求学龄前儿童观看和帮助-一个相当无能的木偶数一套
(Gelman et al 1986)。人偶偶尔会违反
重复计算一对一的原则(例如,“一,二,三,三,
四…)。他有时还会跳过一个对象或重复输入错误的基数
值。

3至5岁的孩子非常善于发现这些违规行为。因此,您的孩子可能会在家里更正自己的高尔夫球的乐趣。

如果您的孩子没有发现错误怎么办?自己纠正高尔夫球。无论哪种方式, 请您的孩子解释出了什么问题。 在另一项类似的研究中,研究人员发现,除非要求幼儿解释木偶的错误,否则学龄前儿童不会取得概念上的进步(Muldoon等,2007)。

有关自我解释如何使学前班数字活动和其他教育经历更有价值的讨论,请参阅此育儿科学证据综述。

5.少/多:帮助学龄前儿童建立关于加法和减法的直觉

年幼的孩子还有很长的路要走,他们准备执行基本的数学计算,如“ 2 +3 = 5”或“ 7-3 = 4”。但是研究表明,我们可以帮助开展此类学前班活动。

有一个木偶或其他玩具角色“烤蛋糕”
(一组令牌)并请您的孩子数数零食。 (你可以数
如果您的孩子需要帮助,请在一起。)接下来,让木偶再烤一个蛋糕
并将其添加到集合中。

现在有更多蛋糕还是更少蛋糕?问你的
孩子,然后向他提供正确的反馈。

通过玩偶来尝试减法
“吃”一块蛋糕。并通过增加或减少其他小游戏来改变游戏
数量,例如两个或三个。

我们应该期望孩子们给出正确的答案吗?没必要-尤其是如果他们不到3岁(Izard et al 2014)。

但是预测和
检查很有价值,即使孩子弄错了准确的数字,他们也会
一项很好的工作,提出合理的猜测。当研究人员问3、4和
5岁的孩子执行这些任务,他们发现90%的猜测都在
正确的方向(Zur and Gelman 2004)。

6.大种族:数量增加和数字增加

当您的孩子开始掌握前几个数字单词时,您也可以尝试这些 经过研究测试的学前班数字活动,用于教孩子们有关数字线的知识。



参考:学前班活动

Butterworth B,Reeve R和Lloyd D.2008。
 不加言语:澳大利亚土著儿童的证据。
美国国家科学院院刊105(35):13179-13184。

Gelman R,Meck E和MerkinS。1986年。幼儿的数字能力。认知发展1(1):1-29。

HonoréN和NoëlMP。 2016.改善学龄前儿童
通过数量级训练进行算术:非符号和非符号的影响
象征性训练。 PLoS一。 11(11):e0166685。

Izard V,Streri A,Spelke ES。 2014年。实际数字:
年幼的孩子使用一对一的对应关系来测量集合的身份,但不能
数值相等。认知心理学。 72:27-53。

Muldoon KP,Lewis C,Francis B.2007。使用基数来
比较数量:早期社会认知冲突的作用
算术。发展心理学10(5):694-711。

Park J和Brannon EM。 2013.训练近似数
系统提高了数学水平。心理科学2013年10月; 24(10):2013-9。

Petersen LA和McNeil NM。 2013。感性丰富的影响
关于学龄前儿童计数性能的操作方法:已建立
知识至关重要。子开发人员84(3):1020-33。

Wang JJ和Feigenson 2019。 婴儿认识到计数在数字上是相关的。发展科学22(6):e12805。

Wang JJ,Odic D,Halberda J,Feigenson L.2016。 改变
学龄前儿童近似数字系统表示的精度变化
他们具有象征意义的数学表现。
J Exp儿童心理。 147:82-99。

Zur O和Gelman R.2004。幼儿可以通过
预测和检查。幼儿研究季刊19:121-137。

“幼儿园号码活动”的内容上次修改时间9/17

图片来源“学前班活动”

带数字板的幼儿的标题图片 伊万·拉迪奇(Ivan Radic)/ Flickr

学龄前儿童活动用品的图片版权育儿科学

弗吉尼亚州立公园的泰迪熊茶会的形象

孩子看着熊的照片 汤姆·佩奇/ flickr

熊和皮包的图片由N.Honoré和MPNoël/ PLos One 2016提供

木偶版权图片育儿科学

更多亲子科学育儿的内容

Leave a Reply

Your email address will not be published. Required fields are marked *